Algebraic Number Theory Final Exam

March 3 2015

Please do not cheat. Good Luck! This exam is of 40 marks. There are 4 questions. (40)

1. Minkowski's bound implies that in every ideal class [I] there is an any ideal $J \in [I]$ with

$$\mathsf{N}(\mathsf{J}) \leqslant \left(\frac{4}{\pi}\right)^{\mathsf{s}} \cdot \frac{\mathsf{n}!}{\mathsf{n}^{\mathsf{n}}} \sqrt{|\Delta_{\mathsf{K}}|}$$

where Δ_{K} is the discriminant and $n = r + 2s = [K : \mathbb{Q}]$. Use it to compute the class number of a. $\mathbb{Q}(\sqrt{10})$. b. $\mathbb{Q}(\sqrt{-163})$ (5)

2 Let $K = \mathbb{Q}(\sqrt{-5})$ and $L = K(\sqrt{5})$. Show that no prime of K ramifies in L. You may use that

$$\mathcal{O}_{\mathsf{L}} = \mathbb{Z}[\mathfrak{i}, \frac{1 + \mathfrak{i}\sqrt{5}}{2}] \tag{8}$$

3. Factorize $\langle 2 \rangle$ in $\mathbb{Q}(\zeta_5)$, where $\zeta_5 = \exp(2\pi i/5)$. (6)

4. Let $K = \mathbb{Q}(\theta)$ with θ in \mathcal{O}_K . Let $n = [K : \mathbb{Q}]$. Show that if $\Delta(1, \theta, \theta^2, \dots, \theta^{n-1})$ is square-free then $\mathcal{O}_K = \mathbb{Z}[\theta]$. (8)

5. Let R be an integral domain and K its quotient field. Let M be an $R\-$ submodule of a finite dimensional $K\-$ vector space. Show

$$\mathsf{M} = \bigcap_{p \text{ maximal}} \mathsf{M}_p$$

where $M_p = R_p M$.

(8).